Надежность
Производство в РФ
+7 (351) 777-06-53
ждем вашего звонка
Сделать заявку

Ионное азотирование деталей из аустенитных сталей

ОКБ Козырев > Техническая библиотека > Ионное азотирование деталей из аустенитных сталей

Ионное азотирование деталей из аустенитных сталей

А.В. АРЗАМАСОВ
МГТУ им. Н. Э. Баумана
ISSN 0026-0819. «Металловедение и термическая обработка металлов», № 1. 1991 г.

Разработка новых производственных процессов ионного азотирования с целью повышения износостойкости поверхности деталей, изготовленных из аустенитных сталей, является актуальной задачей

Аустенитные стали относятся к трудноазотируемым, так как их поверхностные оксидные пленки препятствуют насыщению азотом и коэффициент диффузии азота в аустените меньше, чем в феррите. В связи с этим для удаления оксидных пленок при обычном азотировании необходима предварительная обработка поверхности стали или применение депассиваторов.

Обычное азотирование большинства аустенитных сталей проводят в аммиаке при 560-600 °С в течение 48-60 ч. Однако эти режимы не позволяют получить диффузионные слои толщиной более 0,12-0,15 мм, а на стали 45Х14Н14В2М (ЭИ69) невозможно получить толщину диффузионного слоя более 0,12 мм даже при азотировании в течение 100 ч. Повышение температуры азотирования в печи выше 700 °С приводит к более полной диссоциации аммиака и, вследствие этого, к понижению активности процесса.

Как правило, после обычного азотирования ухудшается коррозионная стойкость поверхностных слоев аустенитных сталей [1, 2].

Ионное азотирование аустенитных сталей способствует увеличению коэффициента диффузии азота и не требует применения депассиваторов. При этом сокращается длительность процесса и улучшается качество получаемых азотированных слоев [1, 2].

Однако ионное азотирование аустенитных сталей по ранее разработанным режимам не позволяло получать диффузионные слои большой толщины даже при длительных выдержках

На основании термодинамических расчетов и экспериментальных исследований был разработан режим ионного азотирования деталей из аустенитных сталей, позволяющий получать качественные глубокие износостойкие немагнитные коррозионно-стойкие диффузионные слои в сравнительно короткое время. Оксидные пленки удалялись с поверхности деталей в процессе химико-термической обработки [3].

Исследовали стандартные аустенитные стали 45Х14Н14В2М (ЭИ69), 12Х18Н10Т (ЭЯ1Т); 25Х18Н8В2 (ЭИ946) и опытные высокоазотистые, разработанные Институтом металловедения и технологии металлов Болгарской Академии наук — типа Х14АГ20Н8Ф2М (0,46% N), Х18АГ11Н7Ф (0,70% N), Х18АГ12Ф (0,88% N), Х18АГ20Н7Ф (1,09% N), Х18АГ20Ф (1,02% N), Х18АГ20Ф (2,00% N) [4, 5].

Исследование структуры диффузионных слоев на сталях проводили с помощью металлографического, рентгеноструктурного и микрорентгеноспектрального анализов. Установлено, что структурным критерием высокой износостойкости азотированных аустенитных сталей является наличие в диффузионном слое нитридов типа CrN. Анализ концентрационных кривых химических элементов, полученных с помощью микроанализаторов ISM-35 CF, Cameca MS-46, Camebax 23-APR-85 показал, что по сравнению с другими тяжелыми элементами хром наиболее скачкообразно распределяется по толщине слоя. В сердцевине образцов распределение хрома равномерное.

Неоднократное повторение экспериментов по исследованию распределения азота и хрома по толщине диффузионного слоя выявило синхронные скачкообразные изменения их концентраций. Кроме того, как показали послойные испытания на изнашивание, наибольшую износостойкость имеет микрозона диффузионного слоя с максимальным содержанием азота и хрома (табл. 1).

Таблица 1.

h, мкм Содержание химических элементов, % ε
C N Cr Ni
20 0,70 10,0 19,0 11,0 9,5
40 0,85 12,0 25,0 8,0 10,7
45 0,88 15,0 25,0 8,0 11,2
50 0,92 10,0 25,0 8,0 11,0
70 0,90 0 14,0 12,0 1,7
* — остальное Fe
Примечания: 1. Испытания на изнашивание проводили на машине «Шкода-Савин».
2. Относительную износостойкость определяли по отношению объёмов вытертых лунок на эталоне (стальной образец с твёрдостью 51 HRC) и исследуемом образце ε = Vэт/Vобр (относительная износостойкость сердцевины ε=0,08).

Дальнейшее исследование структуры азотированных аустенитных сталей с помощью микрорентгеноспектрального анализа позволило установить, что в микрозонах диффузионных слоев с повышенным содержанием азота и хрома наблюдается пониженная концентрация углерода, никеля и железа (табл. 1).

Сравнительный анализ микроструктуры слоя и сердцевины азотированной стали 45Х14Н14В2М, снятой в характеристическом хромовом Кα-излучении показал, что в диффузионном слое содержится больше скоплений «белых точек» — соединений хрома, чем в сердцевине.

Послойные измерения магнитной проницаемости с помощью магнетоскопа F 1.067 и определение содержания ферритной фазы на ферритометре МФ-10И показали, что разработанный способ ионного азотирования деталей из аустенитных сталей способствует получению немагнитных диффузионных слоев (табл. 2).

Таблица 2.

Сталь Состояние h, мкм μ · 106, Гн/м
45Х14Н14В2М Исходное 0 1,259
После ХТО 0 1,269
20 1,274
40 1,272
70 1,269
Х14АГ20Н8Ф2М Исходное 0 1,258
После ХТО 0 1,258
20 1,260
50 1,262
70 1,262

Было также установлено, что азотированные стали 45Х14Н14В2М и типа Х14АГ20Н8Ф2М имеют удовлетворительную коррозионную стойкость.

По новому технологическому процессу была обработана партия шестерен, изготовленных из стали 45Х14Н14В2М. Детали соответствовали техническим требованиям. Микро- и макроструктурный анализ подтвердил наличие у шестерен качественного равномерного диффузионного слоя толщиной 270 мкм.

После длительных промышленных испытаний видимых дефектов на шестернях не обнаружено. Дальнейший контроль показал соответствие геометрических размеров шестерен технологическим требованиям, а также отсутствие изнашивания рабочих поверхностей деталей, что было подтверждено микроструктурным анализом.

Заключение. Разработанный режим ионного азотирования деталей из аустенитных сталей позволяет сократить длительность процесса более чем в 5 раз, при этом толщина слоя увеличивается в 3 раза, а износостойкость слоя — в 2 раза по сравнению с аналогичными параметрами после обычного азотирования. Кроме того, снижается трудоемкость, повышается культура производства и улучшается экологическая обстановка.

Список литературы:
1. Прогрессивные методы химико-термической обработки / Под ред. Г. Н. Дубинина, Я. Д. Когана. М.: Машиностроение, 1979. 184 с.
2. Азотирование и карбонитрирование / Р. Чаттерджи-Фишер, Ф. В. Эйзелл, Р. Хоффман и др.: Пер. с нем. М.: Металлургия, 1990. 280 с.
3. А. с. 1272740 СССР, МКИ С23С8/36.
4. Банных О. А., Блинов В. М. Дисперсионно-твердеющие немагнитные ванадийсодержащие стали. М.: Наука, 1980. 192 с.
5. Рашев Ц. В. Производство легированной стали. М.: Металлургия, 1981. 248 с.